
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Component-based Approach to Software Engineering of Machine
Learning-enabled Systems

Vladislav Indykov
indykov@chalmers.se

University of Gothenburg | Chalmers
Gothenburg, Sweden

ABSTRACT
Machine Learning (ML) - enabled systems capture new frontiers
of industrial use. The development of such systems is becoming a
priority course for many vendors due to the unique capabilities of
Artificial Intelligence (AI) techniques. The current trend today is to
integrate ML functionality into complex systems as architectural
components. There are a lot of relevant challenges associated with
this strategy in terms of the overall system architecture and in
the context of development workflow (MLOps). The probabilistic
nature, crucial dependency on data, and work in an environment
of high uncertainty do not allow software engineers to apply tradi-
tional software development methodologies. As a result, there is a
community request to systematize the most relevant experience in
building software architectures with ML components, to create new
approaches to organizing the process of developing ML-enabled
systems, and to build new models for assessing the system qual-
ity. Our research contributes to all mentioned directions and aims
to create a methodology for the efficient implementation of ML-
enabled software and AI components. The results of the research
can be used in the design and development in industrial settings,
as well as a basis for further studies in the research field, which is
of both practical and scientific value.

CCS CONCEPTS
• Software and its engineering→ Requirements analysis; Software
design engineering; Design patterns; Software design tradeoffs.

KEYWORDS
machine learning, software architecture, software quality
ACM Reference Format:
Vladislav Indykov. 2024. Component-based Approach to Software Engineer-
ing of Machine Learning-enabled Systems. In Conference on AI Engineering
Software Engineering for AI (CAIN 2024), April 14–15, 2024, Lisbon, Portugal.
ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3644815.3644976

1 INTRODUCTION
Machine learning (ML) engineering is an emerging field of research
that lies at the intersection of software engineering and artificial
intelligence (AI) development. Great interest in this area from the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CAIN 2024, April 14–15, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0591-5/24/04.
https://doi.org/10.1145/3644815.3644976

scientific community, practitioners, and industries has been ob-
served in recent years due to the dynamic spread of AI techniques
in various fields. This PhD project strives to obtain the most rele-
vant experience in the field of ML engineering, which includes an
analysis of grey and white literature.

The current trend today is to integrate ML functionality into
complex systems as architectural components [9]. Following this
trend, many practitioners face a number of challenges due to AI
specifics. There are several still unresolved issues associated with
both the unstable quality of architectural solutions and the relatively
low efficiency of the development process [4].

To address architectural challenges, the main emphasis of the
research is put on Component-based Software Engineering (CBSE)
of ML-enabled systems. The CBSE promotes software development
through construction from existing software components, the de-
velopment of components as reusable entities, and system evolution
realization by the customization and replacement of components
[18]. The operational side of software engineering of ML-enabled
systems, known as Machine Learning Operations (MLOPs), is also
of particular interest for this research. MLOps is a set of principles
and practices adopted from Development Operations (DevOps) and
applied to the development of machine learning systems [1].

Previous studies were conducted to identify current issues in
CBSE of AI-enabled software. There were a systematic literature
review [12], a multi-vocal literature review from leading AI com-
panies [11] and case studies in Swedish companies [10]. These
works identified a wide range of challenges that can be classified
into several categories from technical to organizational: problems
in mixing data and code in version management and dependency
management, prediction non-linearity, problems in the inability to
ensure quality assurance, unreliable project planning, etc. Based
on the results, it was concluded that several challenges have been
experienced, but the overall solution for seamless continuous de-
velopment, integration, deployment, operations, and evolution is
still missing. The goal of this PhD project is to address this gap.

Themain researchhypothesis: "The approaches from component-
based software engineering (both technical and operational) can
be tailored for solving the architectural challenges created by AI
specifics".

1.1 Related work
Nowadays, we are witnessing the dynamic growth of scientific ac-
tivity in the field of ML-enabled software engineering. Some works
describe how the engineering of AI-based systems is implemented
in separate companies. Amershi et. al [2] shared the experience of
Microsoft and highlighted the need for detailed studies of CBSE
for ML-enabled systems, Google software engineers [15] presented

1

https://orcid.org/0009-3413-2451
https://doi.org/10.1145/3644815.3644976
https://doi.org/10.1145/3644815.3644976


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

CAIN 2024, April 14–15, 2024, Lisbon, Portugal V. Indykov

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

their observations and emphasized the crucial role of hidden techni-
cal debt consideration in MLOps, SAP and Polytechnique Montreal
[14] reported some recommendations for building ML applications
and highlighted "a growing need for a consolidated set of guidelines
regarding software engineering for machine learning".

Some authors conducted systematic literature reviews and con-
cluded that "mature tools and techniques are missing to engineer
ML systems" [5], the application of software design patterns to
AI-based systems needs deeper investigation [22] and the existing
fundamental differences between the development of traditional
and ML-enabled software requires systematic study of correspond-
ing software architectures [20]. An analysis of related work in the
research area has shown the emergence of an increasing number
of high quality papers, that identify practical and theoretical chal-
lenges in constructing AI-based systems and describe special cases
of their solution [6, 7, 13, 16, 21]. However, most studies continue to
highlight the need for in-depth research continuation and system-
atic exploration of the problems and possible decisions associated
with the design of ML-enabled system architectures. There is an
in-demand request for system-level common recommendations
that would be relevant for the majority of ML-enabled solutions
or divided by certain types of ML solutions (e.g. Deep Learning
(DL)-based, Reinforcement Learning (RL) - based etc.).

Therefore, the research problem is formulated as "the lack of
systematic work that brings together relevant scientific and prac-
tical experience in building architectures for ML-enabled systems
and organizing the process of ML-enabled software development".

2 CONTRIBUTIONS
The main result of the research will be a new multifaceted approach
to the design and development of ML-enabled systems. The project
examines ML-enabled software engineering from different angles,
however, all research contributions are united by one goal - increas-
ing the quality of the development. Moreover, each subsequent
contribution uses the results of the previous one as an input to
obtain a new result. The approach will include the identification
of common indicators for quality assurance (qualitative side); the
design of a quality-driven reference architecture to achieve quality
attributes identified above built on the most relevant practical and
scientific experience and tested in industrial settings (architectural
side); and the development of guidance for ML-enabled software
engineers built on the best practices from experts for effective
implementation of reference architectures (operational side). The
description of contributions can be found below:

Common Quality Model of ML-enabled systems. A systematic
white literature review in the field of ML-enabled software architec-
tures identified a critical need to create a model that describes the
quality of such systems and considers their specificity. More than
60 scientific papers were analyzed to exclusively identify quality
attributes of ML-enabled systems. It is planned to test the relevance
and adequacy of this model in industrial conditions through an ex-
pert interview and assessment. An initial evaluation of this model
was conducted during its demonstration at the Swedish Require-
ments Engineering Meeting (SiREN 2023) and got positive appraisal
from practitioners. The resulting model was descriptive according

to DAP classification [19]. It was included in a scientific paper enti-
tled "Architectural Tactics to Achieve Common Quality Attributes
of Machine-Learning-Enabled Systems" that was submitted to an
International Conference in December 2023 [8].
Quality-driven Software Reference Architecture. To achieve
the identified quality attributes, various architectural tactics (ATs)
were studied. In the absolute majority of cases, quality trade-offs
arose (for example, architectural tactics can improve the model
accuracy, but worsen resource efficiency). The study of ATs and
trade-offs was also included in the systematic literature reviewmen-
tioned earlier [8]. In the course of further research, it is necessary to
explore design patterns and component models of existing AI-based
solutions, as well as their relationship with quality attributes. The
results of the study will be combined into reference architecture of
ML-enabled systems, which can serve as the primary template for
software engineers to architecturally achieve certain qualities. In
the context of our project, the reference architecture corresponds
to "Type 1" (Low-level) according to classification by Angelov et.
al [3]. It remains to be explored whether it can be domain- and
model-type-independent. If it is not, the development of several
reference architectures is possible. The resulting reference architec-
ture(s) will be evaluated by interviews with experts and relevant
case studies.
Modelling Guidance for Software Architects. A significant
part of the studied industrial experience can describe not only the
architectures but also the process of their creation. It includes sev-
eral organizational decisions, guidelines, and tooling. The collected
experience can be compiled into guidance for software architects
in the field of ML-enabled systems. This guidance is planned to
be presented as a collection of best practices, which will give the
architects flexibility in organizing the process. They will be able
to use separate best practices as components of their own project
without forcing themselves into a strict process model. In addition,
various possible implementations of automated tools for supporting
software architects based on the guidance are considered: modeling
assistants, automated techniques for enforcing the correct imple-
mentation of reference architecture, and validation of conformance
of the implemented system’s behavior to architectural decisions
based on run-time data. The results will be evaluated by a focus
group of practitioners.

3 CONCLUSION
The results of this research can be considered as an extension
to the Software Engineering Body of Knowledge (SWEBoK) [17]
that explores the specifics of machine learning development in the
context of overall system design. This PhD project contributes to
the following SWEBoK’s Knowledge Areas: Software Design, Soft-
ware Engineering Management and Software Engineering Process,
Software Quality, and Software Engineering Professional Practice.
Other knowledge areas are left out of scope due to the time frames,
however, they have great potential for further studies.
Acknowledgement. The author wishes to thank the reviewers
for their constructive and high-quality feedback and his scientific
supervisors Daniel Strüber and Rebekka Wohlrab for their constant
support and guidance in running this PhD project. The author also
expresses special thanks to the entire team of the CSE Department.

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Component-based Approach to Software Engineering of Machine Learning-enabled Systems CAIN 2024, April 14–15, 2024, Lisbon, Portugal

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

REFERENCES
[1] Sridhar Alla, Suman Kalyan Adari, Sridhar Alla, and Suman Kalyan Adari. 2021.

What is MLOps? Beginning MLOps with MLFlow: Deploy Models in AWS Sage-
Maker, Google Cloud, and Microsoft Azure (2021), 79–124.

[2] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece
Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann. 2019.
Software engineering for machine learning: A case study. In 2019 IEEE/ACM 41st
International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, 291–300.

[3] Samuil Angelov, Paul Grefen, and Danny Greefhorst. 2009. A classification of
software reference architectures: Analyzing their success and effectiveness. In
2009 Joint Working IEEE/IFIP Conference on Software Architecture & European
Conference on Software Architecture. IEEE, 141–150.

[4] Josu Diaz-de Arcaya, Ana I Torre-Bastida, Gorka Zárate, Raúl Miñón, and Aitor
Almeida. 2023. A joint study of the challenges, opportunities, and roadmap of
mlops and aiops: A systematic survey. Comput. Surveys 56, 4 (2023), 1–30.

[5] GörkemGiray. 2021. A software engineering perspective on engineeringmachine
learning systems: State of the art and challenges. Journal of Systems and Software
180 (2021), 111031.

[6] Lukas Heiland, Marius Hauser, and Justus Bogner. 2023. Design Patterns for
AI-based Systems: A Multivocal Literature Review and Pattern Repository. arXiv
preprint arXiv:2303.13173 (2023).

[7] Hans-Martin Heyn, Eric Knauss, and Patrizio Pelliccione. 2023. A compositional
approach to creating architecture frameworks with an application to distributed
AI systems. Journal of Systems and Software 198 (2023), 111604.

[8] Vladislav Indykov, Daniel Strüber, and Rebekka Wohlrab. 2023. Architectural
Tactics to Achieve Common Quality Attributes of Machine-Learning-Enabled
Systems. In in submission. 1–12.

[9] C Kästner. 2022. Machine learning in production: From models to systems.
[10] Lucy Ellen Lwakatare, Ivica Crnkovic, Ellinor Rånge, and Jan Bosch. 2020. From a

data science-driven process to a continuous delivery process formachine learning
systems. In Product-Focused Software Process Improvement: 21st International
Conference, PROFES 2020, Turin, Italy, November 25–27, 2020, Proceedings 21.
Springer, 185–201.

[11] Lucy Ellen Lwakatare, Aiswarya Raj, Jan Bosch, Helena Holmström Olsson, and
Ivica Crnkovic. 2019. A taxonomy of software engineering challenges formachine

learning systems: An empirical investigation. In Agile Processes in Software
Engineering and Extreme Programming: 20th International Conference, XP 2019,
Montréal, QC, Canada, May 21–25, 2019, Proceedings 20. Springer International
Publishing, 227–243.

[12] Lucy Ellen Lwakatare, Aiswarya Raj, Ivica Crnkovic, Jan Bosch, andHelenaHolm-
ström Olsson. 2020. Large-scale machine learning systems in real-world indus-
trial settings: A review of challenges and solutions. Information and software
technology 127 (2020), 106368.

[13] Roger Nazir, Alessio Bucaioni, and Patrizio Pelliccione. 2024. Architecting ML-
enabled systems: Challenges, best practices, and design decisions. Journal of
Systems and Software 207 (2024), 111860.

[14] Md Saidur Rahman, Emilio Rivera, Foutse Khomh, Yann-Gaël Guéhéneuc, and
Bernd Lehnert. 2019. Machine learning software engineering in practice: An
industrial case study. arXiv preprint arXiv:1906.07154 (2019).

[15] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Diet-
mar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and Dan
Dennison. 2015. Hidden technical debt in machine learning systems. Advances
in neural information processing systems 28 (2015).

[16] Alex Serban, Koen van der Blom, Holger Hoos, and Joost Visser. 2024. Soft-
ware Engineering Practices for Machine Learning—Adoption, effects, and team
assessment. Journal of Systems and Software 209 (2024), 111907.

[17] Computer Society. 2023. SWEBOK Guide Version 4.0 beta. IEEE.
[18] Clemens Szyperski, Dominik Gruntz, and Stephan Murer. 2002. Component

software: beyond object-oriented programming. Pearson Education.
[19] Stefan Wagner. 2013. Software product quality control. (2013).
[20] Zhiyuan Wan, Xin Xia, David Lo, and Gail C Murphy. 2019. How does machine

learning change software development practices? IEEE Transactions on Software
Engineering 47, 9 (2019), 1857–1871.

[21] Stephen John Warnett and Uwe Zdun. 2022. Architectural design decisions for
machine learning deployment. In 2022 IEEE 19th International Conference on
Software Architecture (ICSA). IEEE, 90–100.

[22] Hironori Washizaki, Hiromu Uchida, Foutse Khomh, and Yann-Gaël Guéhéneuc.
2019. Studying Software Engineering Patterns for Designing Machine Learning
Systems. In 2019 10th International Workshop on Empirical Software Engineering
in Practice (IWESEP). 49–495. https://doi.org/10.1109/IWESEP49350.2019.00017

3

https://doi.org/10.1109/IWESEP49350.2019.00017

	Abstract
	1 Introduction
	1.1 Related work

	2 Contributions
	3 Conclusion
	References

